Sign in →

Test Code CD4 CD4 Count for Immune Monitoring, Blood

Additional Codes

Mayo Test ID
TCD4

Reporting Name

CD4 T-Cell Count

Useful For

Serial monitoring of CD4 T cell count in patients who are HIV-positive

 

Follow-up and diagnostic evaluation of primary cellular immunodeficiencies, including severe combined immunodeficiency

 

T-cell immune monitoring following immunosuppressive therapy for transplantation, autoimmunity, and other immunological conditions where such treatment is utilized

 

Assessment of T-cell immune reconstitution post hematopoietic cell transplantation

 

Early screening of gross quantitative anomalies in T cells in infection or malignancies

 

This assay should not be used for diagnosing T-lymphocytic malignancies or evaluation of T-cell lymphocytosis of unknown etiology.

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Specimen Type

Whole Blood EDTA


Ordering Guidance


For diagnosing T-lymphocytic malignancies or evaluation of T-cell lymphocytosis of unknown etiology, order LCMS / Leukemia/Lymphoma Immunophenotyping, Flow Cytometry, Varies, which includes a hematopathology review.



Shipping Instructions


It is recommended that specimens arrive within 24 hours of collection. Collect and package specimen as close to shipping time as possible.



Necessary Information


Date of collection is required.



Specimen Required


Container/Tube: Lavender top (EDTA)

Specimen Volume: 3 mL

Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.

Additional Information: For serial monitoring, it is recommended that specimen collection be performed at the same time of day.


Specimen Minimum Volume

1 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Whole Blood EDTA Ambient 72 hours PURPLE OR PINK TOP/EDTA

Reference Values

The appropriate age-related reference values will be provided on the report.

Day(s) Performed

Monday through Sunday

Test Classification

This test was developed using an analyte specific reagent. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

86359-T cells, total count

86360-Absolute CD4/CD8 count with ratio

LOINC Code Information

Test ID Test Order Name Order LOINC Value
TCD4 CD4 T-Cell Count 80721-4

 

Result ID Test Result Name Result LOINC Value
3321 CD45 Total Lymph Count 27071-0
3316 % CD3 (T Cells) 8124-0
3322 CD3 (T Cells) 8122-4
3319 % CD4 (T Cells) 8123-2
3325 CD4 (T Cells) 24467-3
3320 % CD8 (T Cells) 8101-8
3326 CD8 (T Cells) 14135-8
3327 4/8 Ratio 54218-3
CMTTC Comment 69052-9

Clinical Information

Lymphocytes in peripheral blood (circulation) are heterogeneous and can be broadly classified into T cells, B cells, and natural killer cells. There are various subsets of each of these individual populations with specific cell-surface markers and function. This assay provides absolute (cells/mcL) and relative (%) quantitation for total T cells and CD4+ and CD8+ T-cell subsets, in addition to a total lymphocyte count (CD45+).

 

Each of these lymphocyte subpopulations have distinct effector and regulatory functions and are maintained in homeostasis under normal physiological conditions. Each of these lymphocyte subsets can be identified by a combination of 1 or more cell surface markers. The CD3 antigen is a pan-T-cell marker, and T cells can be further divided into 2 broad categories based on the expression of CD4 or CD8 coreceptors.

 

The absolute counts of lymphocyte subsets are known to be influenced by a variety of biological factors including hormones, the environment, and temperature. The studies on diurnal (circadian) variation in lymphocyte counts have demonstrated progressive increase in CD4 T-cell count throughout the day, while CD8 T cells increase between 8:30 a.m. and noon with no change between noon and afternoon.(1) Circadian variations in circulating T-cell counts have been shown to be negatively correlated with plasma cortisol concentration.(2-4) In fact, cortisol and catecholamine concentrations control distribution and, therefore, numbers of naive versus effector CD4 and CD8 T cells.(2) It is generally accepted that lower CD4 T-cell counts are seen in the morning compared to the evening(5) and during summer compared to winter.(6) These data therefore indicate that timing and consistency in timing of blood collection is critical when serially monitoring patients for lymphocyte subsets.

 

Abnormalities in the number and percent of CD3, CD4, and CD8 T cells have been described in a number of different disease conditions. In patients who are infected with HIV, the CD4 count is measured for AIDS diagnosis and for initiation of antiviral therapy. The progressive loss of CD4 T lymphocytes in patients infected with HIV is associated with increased infections and complications. The US Public Health Service has recommended that all patients who are HIV-positive be tested every 3 to 6 months for the level of CD4 T lymphocytes.

 

Basic T-cell subset quantitation is also very useful in the evaluation of patients of all ages with primary cellular immunodeficiencies, including follow-up for newborn screening for severe combined immunodeficiency and immune monitoring following immunosuppressive therapy for transplantation, autoimmunity, or any other relevant clinical condition where immunomodulatory treatment is used, and the T-cell compartment is specifically affected.

 

It is also helpful as a preliminary screening assay for gross quantitative anomalies in T cells, whether related to malignancies or infection.

Interpretation

HIV treatment guidelines from the US Department of Health and Human Services and the International Antiviral Society USA Panel recommend antiviral treatment in all patients with HIV infection, regardless of CD4 T-cell count.(7,8) Additionally, antibiotic prophylaxis for Pneumocystis jiroveci infection is recommended for patients with CD4 counts below 200 cells/mcL. For other opportunistic infections, see the recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America.(9)

Cautions

T-cell counts should be appropriately interpreted in context of the clinical presentation and other immunological parameters and relevant laboratory test results.

 

For serial monitoring of T-cell numbers, it is recommended that the patient be evaluated at the same time of the day to account for diurnal variation.

 

For follow-up of infants identified by newborn screening for severe combined immunodeficiency (SCID) and severe T-cell lymphopenia, SCID should be considered as a potential diagnosis in infants with fewer than 300 autologous CD3 T cells/mcL. Infants with 300 to 1500 autologous CD3 T cells/mcL may have leaky SCID, Omenn syndrome, or variant SCID, depending on other clinical and molecular features.

 

In infants identified by newborn screening for SCID, T-cell lymphopenia is defined as having up to 1500 autologous CD3T cells/mcL.

 

This assay should not be used for diagnosing T-lymphocytic malignancies or evaluation of T-cell lymphocytosis of unknown etiology, though the latter may be identified through this assay in a screening assessment. In such cases, LCMS / Leukemia/Lymphoma Immunophenotyping, Flow Cytometry, Varies will be recommended, which includes a hematopathology review.

 

Also, when diagnostically assessing lymphocyte subsets (quantitatively) in any of the above clinical contexts, it may be more useful to order the T-cell, B-cell, and natural killer (NK)-cell quantitation assay rather than the T-cell subset quantitation alone, as it excludes B-and NK-cell counts.

Report Available

1 to 2 days

Reject Due To

Gross hemolysis Reject
Gross lipemia Reject

Method Name

Flow Cytometry